Injuries leave clues that can help coaches better prepare their athletes / Part 1

Shayne Murphy

[7-minute read]

Sport will forever challenge its participants to push themselves psychologically, technically, tactically, and physically to succeed. It is this pursuit that captures the world’s attention over and over again. On the darker side of sport, however, an equally imposing phenomenon reaches its participants regardless of their level – injuries. They have been occurring since sport began, and unfortunately, this trend isn’t going away anytime soon.

The incidence of injuries across many sports is always a topic of debate. Recently, there have been some longitudinal studies tracking the prevalence of soft tissue injuries across the world’s best football teams. The studies indicate that the incidence of injury hasn’t improved much over the last number of decades. This is despite the advances in technology, practices, number of staff, etc. However, the demands of football have also increased significantly over that time. The games are more intense in terms of high-speed metrics, games are more frequent, players travel more often, and attend more media events.

The goal of this blog is not to debate whether or not things are improving in terms of injuries in football. It is to explore how we can use injuries as a medium of learning and self-checking that what we are prescribing works. In my opinion, an injury leaves clues about an athlete’s biomechanical and physiological flaws. If we accept that injuries are just part of the process of playing a sport, we can miss valuable insights into our athletes. 

The factors that contribute to injuries are well documented (previous injuries, sleep, training loads, etc). However, athletes still get injured if they had no previous injury, they slept well, their training load has been appropriate, etc. This is the scenario I want the reader to imagine, and I would like to share my thoughts on this scenario. Assuming all the other factors like sleep or training loads are not an issue (which is what support staff and players are extremely good at ensuring), then why does an athlete break down?

Image 1: Injuries leave clues

I mentioned an injury leaves clues. I categorize these clues in three areas:

Injury Clue #1 / The sport 

This factor often gets overlooked, and too often, we treat athletes far too similar. The sport matters because the injuries matter. The injuries that occur in one sport do not mean they will occur across all. Every sport demands that athletes push themselves into various positions at varying speeds and/or forces that create energy throughout the body. The energy needs to be handled for athletes to be successful.

That said, energy is expressed differently through a tennis player’s body than that of a footballer’s because the sport requires it. As a result, they experience different injuries throughout their careers. The sport identifies the array of possible injuries that could occur. 

Image 2: Injury mechanisms in football.

Injury Clue #2 / The mechanism of injury

The mechanism behind an injury is very insightful and, if considered, can help with the rehabilitation, and prevent future injuries. The mechanism of an Anterior Cruciate Ligament injury will typically differ from that of a Posterior Cruciate Ligament.

An injury mechanism is the coming together of forces, masses, momentum, gravity, AKA energy, that can expose a muscle, joint, connective tissue, etc. But as obvious as that sounds, the exact same mechanism performed twice can elicit two different injuries, or no injury at all, which is why there is a third clue. 

Injury Clue #3 / The athlete’s biological & biomechanical make-up

Take two footballers playing the same sport and experience the exact same mechanism, there is a chance that they could experience different injuries, or indeed, one may not get injured at all. To give an example would be two goalkeepers. One goalkeeper is hypermobile at the shoulder, meaning an excessive range of motion with a lack of stability. The other goalkeeper isn’t hypermobile at the shoulder and has good stability at the end range. If they both attempt to save a hard strike in the top corner. The goalkeeper who is hypermobile is at more of risk of dislocating his shoulder versus the other.

The sport (football) and mechanism (diving) could cause a dislocation because of his biological and biomechanical make-up. Hence, why our biomechanical and biological pre-dispositions can determine our injuries. We can expand this a little further to say it is the relationship between mobility and stability within and around a joint. This incorporates inter and intra-muscle coordination. We shall expand on this further in the blog. 

Image 3: Injuries leave clues

To summarise, the sport indicates the type of injuries athletes are at risk of experiencing; the mechanism is the action that can expose the body to those injuries. And it is an athlete’s biomechanical and biological make-up that can determine the extent or type of injury.

The role of programming

There isn’t much we can do about the sport or even the mechanism, but there is undoubtedly a lot we can do about the biomechanics and biology of our athletes. Our method to affect this change is in our exercise programmes.

However, not all exercises or training are equal. We have to know what we are looking to change and monitor to see if that change is occurring rather than simply selecting exercises. Over the following few paragraphs and blogs, I will try to explain my thought process.

Image 4: Gareth Bale sprint technique. Credit: Shutterstock

A working example

Let us talk about adductor injuries and, using the thought process above. 


Groin pain is a frequent complaint in athletes. It occurs commonly in sports involving repeated sprinting, twisting, kicking, and cutting such as soccer, rugby, and Australian rules (Bradshaw and McCrory, 1997; Jansen et al., 2008b). Hip adductor muscle injuries are the second most common muscle injury in football (Ekstrand et al., 2011) and the most frequent acute groin injury in athletes (Serner et al., 2015). Adductor-related injuries constitute 64–69% of all groin injuries (Holmich, 2007), and 40% experience absence from football for more than 28 days (Holmich et al., 2014).

Image 5: UEFA Elite Club Injury Study 2017/18 season report
Image 6: UEFA Elite Club Injury Study 2018/19 season report
UEFA Club Injury Study 2019/20

The UEFA Elite Injury Study monitors the incidence of injuries across the world’s best football teams. The studies in the last three years have reported that hip/groin injuries account for 10%-28% of the injuries within those teams. It is evident that the demands of football can and will cause adductor injuries. The next thing to look at is the mechanism within the sport. What action in football causes players to get adductors issues? 

Mechanism of injury

When analyzing injury incidence, understanding the mechanism is a necessary process to undertake. The process can help identify why and how it happened and provides practitioners with some context for the rehabilitation process. Adductor injuries are relatively common, especially in football. The hip adductor muscles account for two-thirds of acute groin injuries in athletes, and the adductor longus is injured in 90% of these cases (Serner et al., 2015) 

Unfortunately, there isn’t an abundance of research on the injury mechanism for the adductors. However, one study investigated the mechanism of acute adductor longus injuries in football using systematic visual video analysis (Serner et al., 2018).  They reported 4 different mechanisms for the 17 injuries investigated in their study.  

The mechanisms reported were: 

  1. Change of direction (35%)
  2. Kicking (29%)
  3. Reaching (24%)
  4. Jumping (12 %)

Each incidence should be taken in isolation, but it is interesting when we analyze the loading pattern during the time of injury as an overview. For most incidences, the pelvis was going through posterior rotation (80%). In most of the incidences (53%), the trunk was rotating away from the injured side. This sequence will load the adductor longus proximally in the sagittal and transverse plane. It is difficult to note what is occurring in the frontal plane from the table above.

In the hip, the most frequent positions involved extension and abduction, which would load the adductor longus in the frontal and sagittal plane. External rotation of the hip was also a regular position; this would, in fact, unload the adductor longus in the transverse plane. However, there could be instances where the femur was in external rotation but internally rotating, which would stress the adductor longus.

Looking at instances of injuries as an average or trend isn’t best practice; however, if it only makes the point that muscles break down when they cannot cope with the demands or bone motions across all three planes, it is a worthwhile exercise.      

We can’t avoid playing the sport, nor should we try. Consequently, the sport will generate mechanisms that cause injury, again something we cannot affect. So, the question is, how can we prepare our athletes to manage the sport and its mechanisms? In the next blog, we will dig deeper into this discussion.

Did you enjoy this article?

If so, then please share it



  • Bradshaw, C. and McCrory, P. (1997) Obturator nerve entrapment. Clinical Journal of Sport Medicine, 7(3), pp. 217e9.
  • Ekstrand, J. and  Hägglund, M. and Waldén, M. (2011) Epidemiology of muscle injuries in professional football (soccer), American Journal of Sports Medicine, 39, pp. 1226–32.
  • Engebretsen, A.H. and Myklebust, G. and Holme I, et al (2010). Intrinsic risk factors for groin injuries among male soccer players: a prospective cohort study. American journal of sports medicine, 38, pp. 2051–7.
  • Hölmich, P. (2007). Long-standing groin pain in sportspeople falls into three primary patterns, a “clinical entity” approach: a prospective study of 207 patients. British Journal of Sports Medicine, 41(4), pp. 247e52.
  • Jansen, J.A. and Mens, J.M. and Backx, F.J. and Stam, H.J. (2008b) Diagnostics in athletes with long-standing groin pain. Scandinavian Journal of  Medicine and Science Sports, 18(6), pp. 679e90.
  • Serner, A. and Mosler, A.B, Tol, J.L and Bahr, R. and Weir, A. (2018) Mechanisms of acute adductor longus injuries in male football players: a systematic visual video analysis. British Journal of Sports Medicine, 0, pp. 1–8.
  • Serner, A. and Weir, A. and Tol, J.L. et al (2018) Characteristics of acute groin injuries in the adductor muscles: a detailed MRI study in athletes. Scandinavian Journal of Medicine and Science Sports, 28, pp. 667–76
  • Serner, A. and Jakobsen, M.D. and Andersen, L.L and Hölmich, P. and Sundstrup, E. and Kristian, T.  and Serner, A. and Weir, A. and Tol, J.L. et al (2018) Characteristics of acute groin injuries in the adductor muscles: a detailed MRI study in athletes. Scandinavian Journal of Medicine and Science Sports, 28, pp. 667–76.Werner, J. and Hägglund, M. and Waldén, M.  et al (2009) UEFA injury study: a prospective study of hip and groin injuries in professional football over seven consecutive seasons.  British Journal ofSports Medicine, 43, pp. 1036–40.

About RYPT

At RYPT we’re dedicated to making the delivery of individualized fitness programs, and the gathering of performance data frictionless, so that coaches have the insights they need to optimize the performance of each individual. It’s our goal to connect individuals with high-quality coaches and help coaches to optimize performance and the performance of their business.

RYPT provides coaches with a digital channel to connect with their clients and athletes and bespoke tools to build, and deliver individualized training programs and monitor exercise, training load, well-being, and nutrition data. Giving coaches the full picture of their client’s and athlete’s performance, and the insights they need to make data-led decisions to optimize performance, prevent overtraining and injury, and improve results. The RYPT coaching platform is supported by eCommerce functionality with powerful automation to help coaches monetize their expertise by reaching more remote clients.

Injuries Performance

About the author

Shayne Murphy

Shayne Murphy is the founder and director of SDM Performance. He qualified with a first-class honours degree in Sports and Exercise Sciences at the University of Limerick in 2010. He completed his MSc in Sports Science in 2012 and certified as a Strength and Conditioning Coach in 2013. Shayne has been working in elite football for over 11 years across first team and academy squads in the Premier League, including Manchester City, Liverpool FC, Blackburn Rovers, and Cardiff City. He also spent several years with the Wales National Squads during their international campaigns at U21 level. He currently works with sports people independently and remains a consultant for City Football Group, which is a global football organisation. As part of his role with CFA, he recently led the sports science department at New York City FC in the US for their pre-season. He also works with the Scottish FA as a Football Scientist and a Lecturer at Setanta College.

Want to leave a comment about this article?

Your email address will not be published. Required fields are marked *

What are you waiting for?

Talk to our team and see how RYPT can help you